



## **Safety and Asset Reliability for Hydrogen Electrolysis Panel Discussion**

**David A. Moore, PE, CSP  
President & CEO  
AcuTech Group, Inc.**

[www.acutech-consulting.com](http://www.acutech-consulting.com)

**2nd Annual Mind the Gap: Identifying Solutions for Electrolytic  
Hydrogen Production**

**March 4-6, 2025**

**Renaissance Phoenix Glendale Hotel and Spa  
Phoenix, Arizona**



# Hydrogen Industry Safety Approach

---

- As we build out the hydrogen industry applications there will be an unprecedented integration of hydrogen into many aspects of industrial and non-industrial uses.
- There is a network of global regulations, engineering standards, codes, and guidance for best practices for hydrogen safety.
- Following good design codes and standards is not considered best practice for good safe plants and operations.



# Hydrogen Industry Safety Approach

- Process safety in addition is the “gold standard” for safety management of hazardous chemical processes
- PSM regulations v voluntary mgmt system
- Vary depending on the country of operation and their regulatory frameworks.
- **Gaps?** –
  - Others may operate in countries that do not have a PSM regulation or they may be excepted by threshold quantitates or exemptions as fuel.
- **Recommendation** - Producers, suppliers, facility operators, users, and their contractors and employees would all benefit from an industry approach to voluntary PSM



VOLUME: 1  
DATE: JANUARY 14, 2025

## INCIDENT REPORTS

EVENTS REPORTED TO THE CSB UNDER THE ACCIDENTAL RELEASE REPORTING RULE



U.S. Chemical Safety and  
Hazard Investigation Board

# Causes of Accidents in the Chemical Industry

## A. Human error

- Failure to follow safety protocols
- Slips in operations
- Inadequate maintenance practices
- Design or manufacturing defects

### ► Root causes may include:

- Inadequate training
- Process safety competency gaps
- Poor communication
- Lack of supervision
- Lack of change control

VOLUME: 1  
DATE: JANUARY 14, 2025

## INCIDENT REPORTS

EVENTS REPORTED TO THE CSB UNDER THE ACCIDENTAL RELEASE REPORTING RULE



U.S. Chemical Safety and  
Hazard Investigation Board

# Causes of Accidents in the Chemical Industry

- B. Equipment failure
- C. Natural events
  - Earthquakes
  - Extreme weather conditions
  - **Possible Contributing factors:**
    - Lack of safety culture
    - Cost-cutting measures
    - Inadequate emergency response plans

# US DOE Hydrogen Safety Panel – Hydrogen Incident Examples

**HYDROGEN Safety Panel**

## Hydrogen Incident Examples

Select Summaries of Hydrogen Incidents from the H2tools.org Lessons Learned Database

March 2020

PNNL-29731

### Table of Contents

#### Contents

|                                                                                          |           |
|------------------------------------------------------------------------------------------|-----------|
| DISCLAIMER.....                                                                          | 2         |
| DOCUMENT PURPOSE AND NAVIGATION.....                                                     | 1         |
| <b>A. PRESSURE RELIEF DEVICE INCIDENTS .....</b>                                         | <b>4</b>  |
| A-1. Jul 25, 2013: Burst Disk Actuation .....                                            | 4         |
| A-2. Jan 15, 2002: Burst Disk Actuation .....                                            | 4         |
| A-3. Jan 8, 2007: Rupture Disk Failure during Hydrogen Delivery.....                     | 4         |
| A-4. Dec 31, 1969: Incorrect Relief Valve Set Point Leads to Explosion .....             | 5         |
| <b>B. HYDROGEN CYLINDER INCIDENTS.....</b>                                               | <b>6</b>  |
| B-1. Mar 13, 2012: Leaking Hydrogen Cylinder.....                                        | 6         |
| B-2. Mar 17, 1999: Over Pressurized Cylinder at Test Vault .....                         | 6         |
| B-3. Nov 1, 2001: Incorrect Flammable Gas Cylinder.....                                  | 6         |
| B-4. Apr 30, 1995: Ruptured CO <sub>2</sub> Cylinder Causes Hydrogen Fire .....          | 7         |
| B-5. Apr 26, 2010: Release from Cylinder when Removing Cap.....                          | 7         |
| B-6. Dec 23, 2003: Hydrogen Cylinder Transport Accident Results in Explosion.....        | 7         |
| B-7. Feb 6, 2013: Hydrogen Gas Regulator Failure .....                                   | 8         |
| <b>C. PIPING INCIDENTS.....</b>                                                          | <b>9</b>  |
| C-1. Sep 30, 2004: Laboratory Compression Fitting Installation.....                      | 9         |
| C-2. Apr 30, 1995: Severed Hydrogen Tubing at Power Plant.....                           | 9         |
| C-3. Nov 4, 1997: Check Valve Shaft Blow-Out .....                                       | 9         |
| C-4. Dec 31, 1969: Hole Rubbed in Hydrogen Piping.....                                   | 10        |
| C-5. Apr 20, 1987: Hydrogen Leak in Auxiliary Building.....                              | 10        |
| C-6. Aug 19, 1986: Failure of Stainless-Steel Valves due to Hydrogen Embrittlement ..... | 10        |
| C-7. Jan 24, 1999: Fire at a Hydrogen Storage Facility .....                             | 11        |
| C-8. Jul 27, 1991: Hydrogen Excess Flow Valve Fails to Close Completely .....            | 11        |
| C-9. Feb 6, 2008: Ball Valve Fails to Open Due to Valve Stem Failure .....               | 11        |
| C-10. Oct 3, 2008: Response to Pin Hole Fire .....                                       | 12        |
| C-11. Oct 31, 1980: Hydrogen Leak from Underground Pipe and Explosion.....               | 13        |
| <b>D. LIQUID HYDROGEN INCIDENTS .....</b>                                                | <b>15</b> |
| D-1. Jan 1, 1974: Plugged LH <sub>2</sub> Tank.....                                      | 15        |
| D-2. Apr 4, 2002: Hydrogen Vent Line Weld Failure.....                                   | 15        |
| D-3. Dec 31, 1969: Hydrogen Delivery Truck/Facility Connection Leak .....                | 15        |
| D-4. Jan 19, 2009: Liquid Hydrogen Leak .....                                            | 16        |
| D-5. Dec 17, 2004: Delivery Truck Fire .....                                             | 16        |
| D-6. Aug 6, 2004: Delivery Truck Offloading Valve Failure .....                          | 16        |
| <b>E. HYDROGEN INSTRUMENT INCIDENTS .....</b>                                            | <b>18</b> |
| E-1. Feb 6, 2013: Parking Lot of Commercial Facility .....                               | 18        |
| E-2. Jan 15, 2019: Pressure Sensor Diaphragm Ruptures .....                              | 18        |
| E-3. Dec 31, 1969: Pressure Gage Rupture .....                                           | 19        |
| <b>F. INDUSTRIAL TRUCK INCIDENTS.....</b>                                                | <b>20</b> |
| F-1. Jul 21, 2011: Government Warehouse .....                                            | 20        |
| F-2. Feb 8, 2011: Ball of Fire from Hydrogen Fuel Cell Forklift.....                     | 20        |

[https://h2tools.org/sites/default/files/Hydrogen\\_Ingredient\\_Examples.pdf](https://h2tools.org/sites/default/files/Hydrogen_Ingredient_Examples.pdf)

# US DOE H2Tools Website Incident Summaries

Key:

- ⊖ = No Ignition
- 💥 = Explosion
- 🔥 = Fire

## Hydrogen Incident Summaries by Equipment and Primary Cause/Issue

| Equipment / Cause                        | Equipment Design or Selection | Component Failure                                                                                                                                                                                           | Operational Error | Installation or Maintenance                                            | Inadequate Gas or Flame Detection | Emergency Shutdown Response | Other or Unknown                           |
|------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------|-----------------------------------|-----------------------------|--------------------------------------------|
| Hydrogen Gas Metal Cylinder or Regulator |                               | ⊖ 3/31/2012<br>🔥 4/30/1995<br>⊖ 2/6/2013                                                                                                                                                                    | ⊖ 4/26/2010       | 💥 12/31/1969                                                           |                                   |                             | ⊖ 3/17/1999<br>⊖ 11/1/2001<br>💥 12/23/2003 |
| Piping/Valves                            |                               | ⊖ 4/4/2002<br>⊖ 2/2/2008<br>⊖ 5/11/1999<br>⊖ 4/20/1987<br>⊖ 11/4/1997<br>⊖ 12/31/1969<br>⊖ 8/19/1986<br>⊖ 7/27/1991<br>⊖ 12/19/2004<br>⊖ 2/6/2008<br>🔥 10/3/2008<br>🔥 4/5/2006<br>⊖ 5/1/2007<br>⊖ 9/19/2007 | 🔥 2/7/2009        | 🔥 1/24/1999<br>⊖ 2/24/2006<br>⊖ 6/8/1998<br>💥 12/31/1969<br>🔥 2/7/2009 | 🔥 9/1/1992<br>💥 10/31/1980        | 🔥 10/3/2008                 |                                            |

<https://h2tools.org/>

# US DOE H2Tools Website Incident Summaries - Trends

## Hydrogen Incidents... Seeing the Common Thread



### ▶ Electrolyzer

- Personnel did not fully understand the interrelation of electrolyzer membrane gas permeability, membrane degradation, and dynamic operating range

### ▶ Hydrogen Vehicle Fueling Station

- Assembly error of an end plug for the high-pressure hydrogen tank

### ▶ Hydrogen Transport

- Incorrect pressure relief devices installed during maintenance

### ▶ Hydrogen Tanker Loading

- Unauthorized repair and failure to follow procedures

### ▶ Hydrogen Bus Fueling Station

- Incompatible pressure relief device installed



Courtesy of Gangwon Fire HeadQuarter

Damage from Electrolyzer Incident

Courtesy of Nick Barilo, Director, Center for Hydrogen Safety

# Hydrogen Safety Challenges

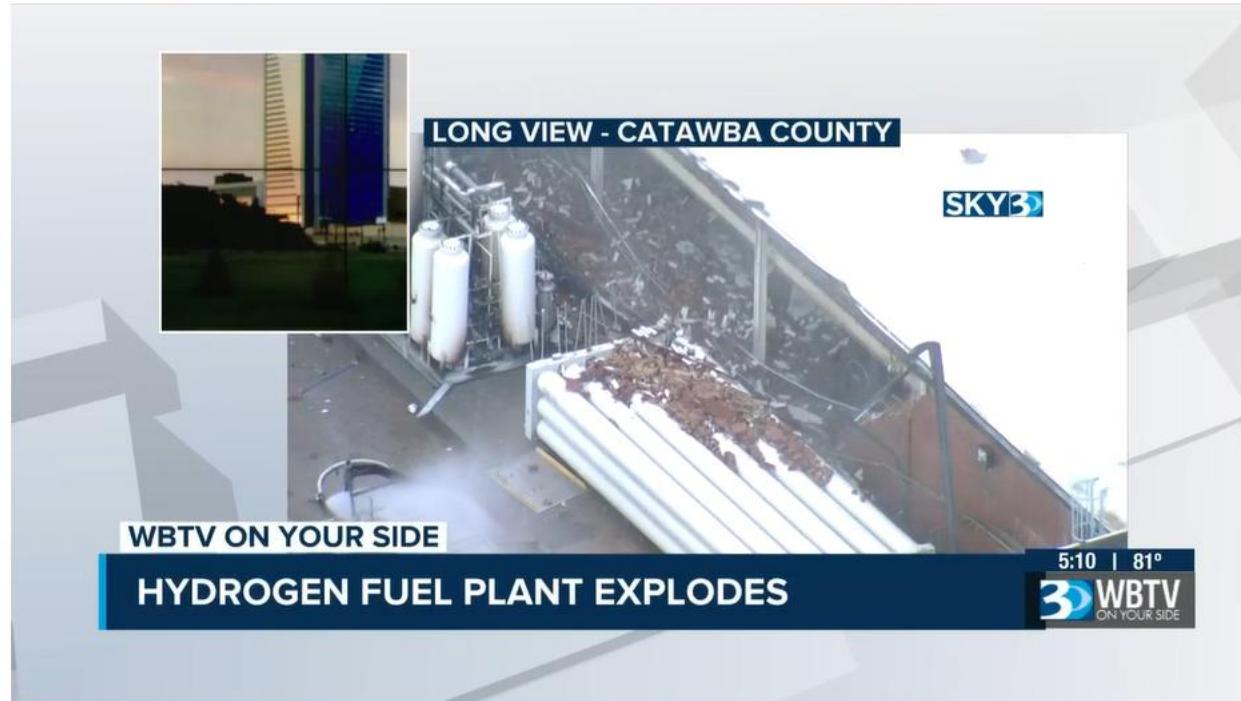
- Scaling at a rapid pace
- Propensity for hydrogen to leak and high potential for ignition; oxygen hazards
- Overpressure explosion hazards when hydrogen is released into confined or congested areas or internal explosions where hydrogen and oxygen may interface
- Lack of operating experience
- Unfamiliar technology to many engineers and operators
- Range of operating parameters (P, T, power density, lifespan)
- Novel technology developments expected as the industry evolves
  - Operating history and safety and reliability data is lacking
- Balance of plant (BOP) components can differ across electrolyzer stack designs
- Design codes and standards are developing

# Example – Compressed Gas Association Process Safety Management and EPA Risk Management Guidance Document

- The U.S. Occupational Safety and Health Administration (OSHA) Process Safety Management (PSM) standard and the U.S. Environmental Protection Agency (EPA) Risk Management Program (RMP) rule require that some U.S. industrial gas facilities comply with these regulations”.
- **P-28: OSHA Process Safety Management and EPA Risk Management Plan Guidance Document for Bulk Liquid Hydrogen Supply Systems**
- This publication is designed to help owners and operators of liquid hydrogen bulk tanks comply with PSM and RMP rules in addition to the requirements of CGA H-5, Standard for Bulk Hydrogen Supply Systems (an American National Standard). CGA H-5 refers to NFPA 55, Compressed Gases and Cryogenic Fluids Code, for the minimum setback distances between bulk hydrogen systems and exposures.
- **P-29, Guideline for Application of OSHA PSM and EPA RMP to the Compressed Gas Industry.**
- More details about the application of OSHA PSM and EPA RMP to hydrogen supply systems and other compressed gas and cryogenic fluid systems can be found in CGA



# Process Safety Management Systems – License to Operate


- There is a strong business case for implementing process safety management systems – the value is in preventing the loss of lives, preserving the integrity of operations and protecting the environment.
- Safety management systems are well developed over the past 50+ years
- It takes years of development to make a PSM system effective and diligence to sustain that level



# Long View North Carolina, OneH2 Hydrogen Tube Trailer Filling Facility, 4/7/2020

≡ Live News Weather Traffic WBTV Investigates On Your Side Tonight QC Life Sports Community

## Explosion at hydrogen fuel plant damages 60 nearby homes in Catawba County



Hydrogen Quantity: 50-60kg

Quoted from: [Explosion at hydrogen fuel plant damages 60 nearby homes in Catawba County](#)

Officials say all 44 OneH2 employees have been accounted for. It's unclear how many, if any, employees were inside the facility at the time of the explosion.

It appears the explosion happened near the back, outside part of the building, according to officials.

**Damage was reported to the building and about 60 surrounding homes.**

Fire officials say **the homes were inspected and one was deemed uninhabitable**. All the other homes suffered "mostly minor damage from the explosion."

Lynn Brigsbee's home was the one heavily damaged. by the explosion.

"95 percent of my windows are gone," she said.

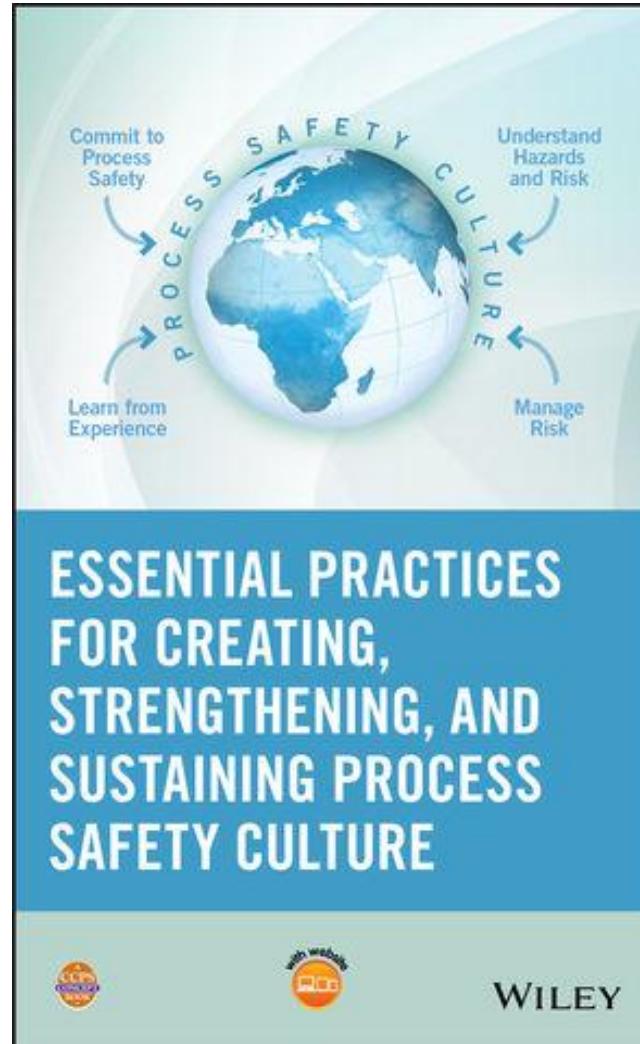
Lynn was on the sofa when the blast happened less than 100 yards away.

# Long View North Carolina, OneH2 Hydrogen Tube Trailer Filling Facility, 4/7/2020

---

|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title                                      | Long View, North Carolina, USA<br>One H2 hydrogen tube trailer production and filling facility                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date                                       | 4/7/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description                                | While the exact cause is unknown, it is generally accepted that hydrogen was released from a failure within a compressed hydrogen storage system. The failure resulted in the formation of a hydrogen/air mixture which subsequently ignited, apparently in a relatively open area.                                                                                                                                                                                                                                     |
| Incident Type                              | Structural damage to a wall of the company's facility as well as to nearby residences.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Contributing factors                       | Confinement - Outdoor storage equipment was located close to the wall of the facility.<br>Weak fire barrier walls - The facility walls were not designed to withstand the level of overpressure caused by ignition of the released fuel.<br><br>Insufficient separation distance - Offsite risk had not been adequately assessed with the distance from nearby houses to prevent damaging overpressure levels at those locations.<br><br>Mechanical integrity - The vent system may not have been adequately supported. |
| Estimated Hydrogen Quantity                | 50-60 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Impact                                     | Community - damage to residences<br>Property - equipment damage, structural damage to facility wall<br>Local News media coverage                                                                                                                                                                                                                                                                                                                                                                                        |
| Technical References                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Media Coverage                             | <a href="#">Explosion at hydrogen fuel plant damages 60 nearby homes in Catawba County</a> <a href="#">Catawba County, North Carolina</a>                                                                                                                                                                                                                                                                                                                                                                               |
| Incident's relevance                       | Sites where facilities have fire barrier walls constructed next to hydrogen equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PSM Elements found as contributing factors | Risk Assessment, Siting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# Safety Culture for Hydrogen Industry


---

- *There is a need for continuously diligent hydrogen safety culture* to improve overall performance
- It must be the foundation of the operating philosophy
- We believe enhancing culture is key to a potential breakthrough in more effective program results.



# Core Principles of Process Safety Culture

- ▶ Establish an Imperative for Safety
- ▶ Provide Strong Leadership
- ▶ Maintain a Sense of Vulnerability
- ▶ Understand and Act Upon Hazards/Risks
- ▶ Empower Individuals to Successfully Fulfill their Safety Responsibilities
- ▶ Defer to Expertise
- ▶ Ensure Open and Frank Communications
- ▶ Foster Mutual Trust
- ▶ Combat the Normalization of Deviance
- ▶ Learn to Assess and Advance the Culture



CCPS  
Guidelines PSM  
Culture (2017)

# Conduct of Operations – Principles<sup>1</sup>

- ▶ Conduct of Operations (COO) is the embodiment of an organization's values and principles in management systems that are developed, implemented, and maintained to:
  - 1) structure operational tasks in a manner consistent with the organization's risk tolerance
  - 2) ensure that every task is performed deliberately and correctly
  - 3) minimize variations in performance



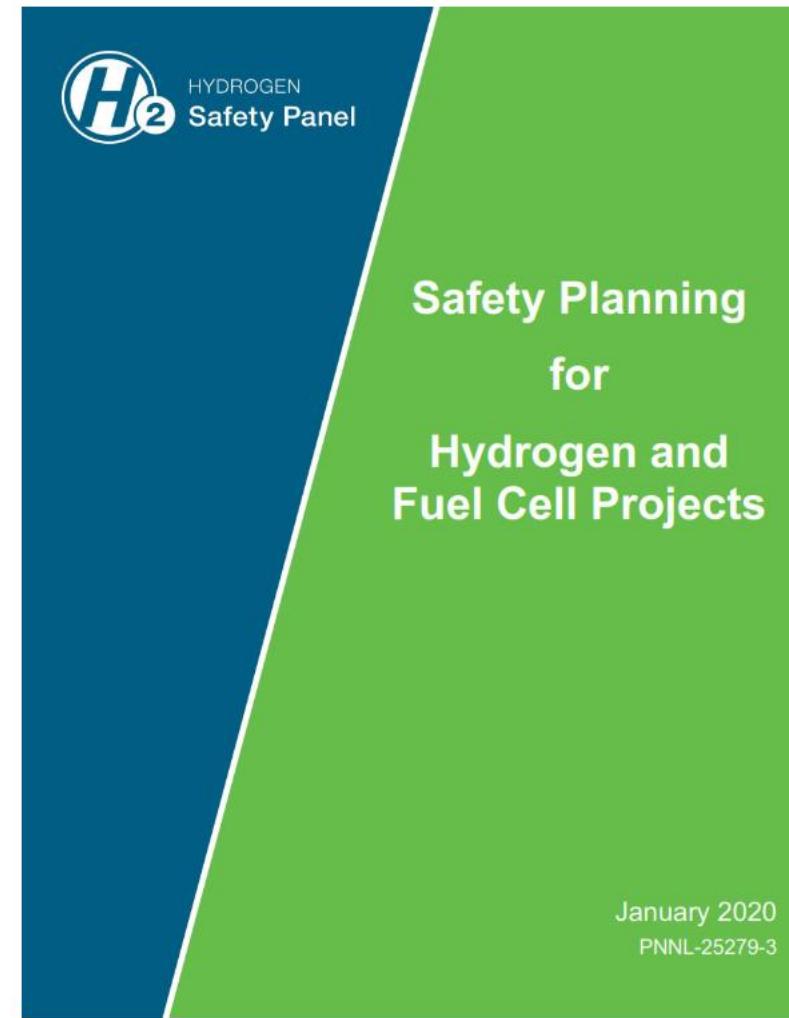
<sup>1</sup> "Conduct of Operations and Operational Discipline – For Improving Process Safety in Industry", CCPS, Wiley, 2011

# Conduct of Operations and Operational Discipline Contribution to Major CSB Incidents

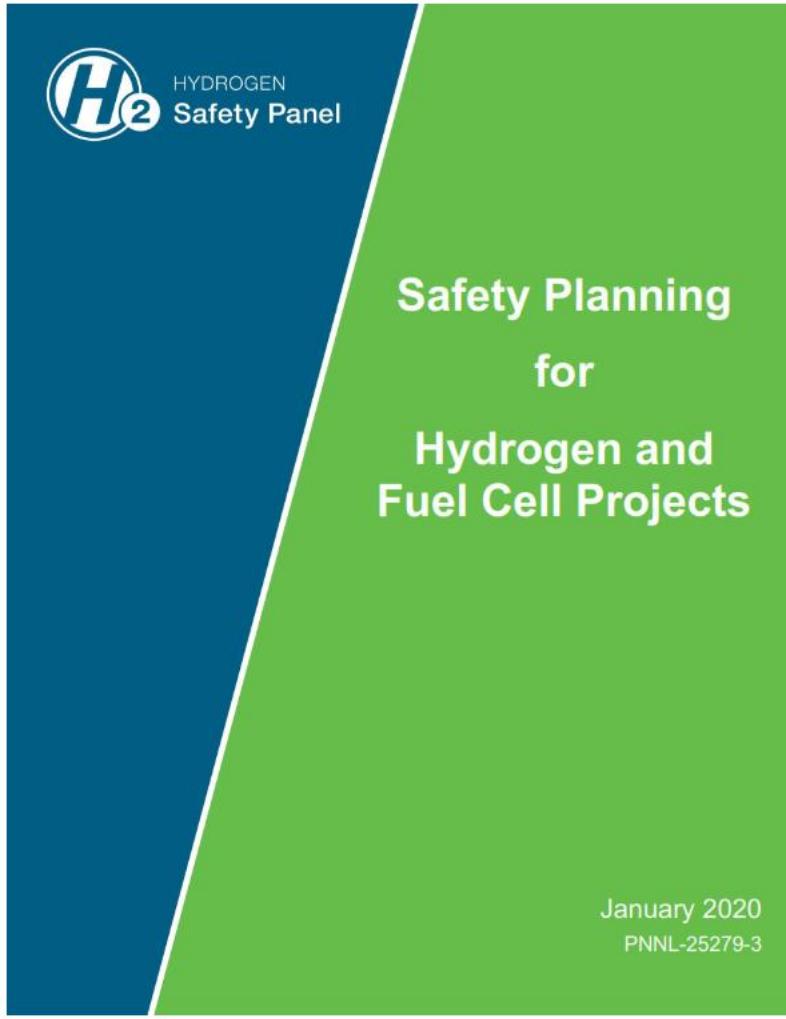
| Conduct of Operations and Operational Discipline – Primary Findings                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A2, A5, A10                                                                                                                                                                                                                                                   |
| C3, C11, C12, C18, C26, C43, C50, C57, C58                                                                                                                                                                                                                    |
| D9                                                                                                                                                                                                                                                            |
| J2, J19, J28, J38, J49, J50, J51, J52, J53, J54, J55, J56, J57, J58, J61, J63, J67, J70, J72, J73, J114, J127, J130, J147, J151, J165, J171, J174, J178, J180, J182, J183, J188, J190, J192, J208, J209, J211, J217, J243, J247, J248, J259, J262, J270, J271 |
| S3, S4, S5, S13, S14                                                                                                                                                                                                                                          |
| Conduct of Operations and Operational Discipline – Secondary Findings                                                                                                                                                                                         |
| A6, A7                                                                                                                                                                                                                                                        |
| C13, C15, C20, C24, C27, C28, C60, C76                                                                                                                                                                                                                        |
| D7, D19                                                                                                                                                                                                                                                       |
| J21, J22, J24, J25, J32, J35, J40, J64, J65, J75, J76, J91, J108, J109, J116, J119, J128, J129, J131, J133, J162, J163, J170, J176, J181, J184, J185, J186, J212, J237, J253, J261                                                                            |
| S1, S10, S12, S15                                                                                                                                                                                                                                             |

| Investigation                                                                   |
|---------------------------------------------------------------------------------|
| C1. Arkema Inc. Chemical Plant Fire                                             |
| C2. Acetylene Service Company Gas Explosion                                     |
| C3. AirGas Facility Fatal Explosion                                             |
| C4. AL Solutions Fatal Dust Explosion                                           |
| C5. Allied Terminals Fertilizer Tank Collapse                                   |
| C6. Barton Solvents Explosions and Fire                                         |
| C7. Bayer CropScience Pesticide Waste Tank Explosion                            |
| C8. Bethlehem Steel Corporation Gas Condensate Fire                             |
| C9. Bethune Point Wastewater Plant Explosion                                    |
| C10. BLSR Operating Ltd. Vapor Cloud Fire                                       |
| C11. BP America Refinery Explosion                                              |
| C12. BP Amoco Thermal Decomposition Incident                                    |
| C13. CAI / Arnel Chemical Plant Explosion                                       |
| C14. Carbide Industries Fire and Explosion                                      |
| C15. Caribbean Petroleum Refining Tank Explosion and Fire                       |
| C16. Chevron Refinery Fire                                                      |
| C17. CITGO Refinery Hydrofluoric Acid Release and Fire                          |
| C18. Combustible Dust Hazard Investigation                                      |
| C19. ConAgra Natural Gas Explosion and Ammonia Release                          |
| C20. CTA Acoustics Dust Explosion and Fire                                      |
| C21. D.D. Williamson & Co. Catastrophic Vessel Failure                          |
| C22. Donaldson Enterprises, Inc. Fatal Fireworks Disassembly Explosion and Fire |
| C23. DPC Enterprises Festus Chlorine Release                                    |
| C24. DPC Enterprises Glendale Chlorine Release                                  |

|                                                                   |
|-------------------------------------------------------------------|
| C25. DuPont Corporation Toxic Chemical Releases                   |
| C26. DuPont La Porte Facility Toxic Chemical Release              |
| C27. E. I. DuPont De Nemours Co. Fatal Hotwork Explosion          |
| C28. Emergency Shutdown Systems for Chlorine Transfer             |
| C29. Enterprise Pascagoula Gas Plant Explosion and Fire           |
| C30. EQ Hazardous Waste Plant Explosions and Fire                 |
| C31. ExxonMobil Refinery Explosion                                |
| C32. First Chemical Corp. Reactive Chemical Explosion             |
| C33. Formosa Plastics Propylene Explosion                         |
| C34. Formosa Plastics Vinyl Chloride Explosion                    |
| C35. Freedom Industries Chemical Release                          |
| C36. Georgia-Pacific Corp. Hydrogen Sulfide Poisoning             |
| C37. Hayes Lemmerz Dust Explosions and Fire                       |
| C38. Herrig Brothers Farm Propane Tank Explosion                  |
| C39. Hoeganaes Corporation Fatal Flash Fires                      |
| C40. Honeywell Chemical Incidents                                 |
| C41. Imperial Sugar Company Dust Explosion and Fire               |
| C42. Improving Reactive Hazard Management                         |
| C43. Kaltech Industries Waste Mixing Explosion                    |
| C44. Kleen Energy Natural Gas Explosion                           |
| C45. Little General Store Propane Explosion                       |
| C46. Macondo Blowout and Explosion                                |
| C47. Marcus Oil and Chemical Tank Explosion                       |
| C48. MFG Chemical Inc. Toxic Gas Release                          |
| C49. MGPI Processing, Inc. Toxic Chemical Release                 |
| C50. Morton International Inc. Runaway Chemical Reaction          |
| C51. Motiva Enterprises Sulfuric Acid Tank Explosion              |
| C52. NDK Crystal Inc. Explosion with Offsite Fatality             |
| C53. Oil Site Safety                                              |
| C54. Packaging Corporation of America Hot Work Explosion          |
| C55. Partridge Raleigh Oilfield Explosion and Fire                |
| C56. Praxair Flammable Gas Cylinder Fire                          |
| C57. Pryor Trust Fatal Gas Well Blowout and Fire                  |
| C58. Sierra Chemical Co. High Explosives Accident                 |
| C59. Sonat Exploration Co. Catastrophic Vessel Overpressurization |


See [www.csb.gov](http://www.csb.gov) for incident investigation reports

1 “Driving Continuous Process Safety Improvement from Investigated Incidents”, CCPS, Wiley, 2021


# CCPS Risk Based Process Safety v OSHA PSM v HSP Safety Plan

**Table 2.1. Comparison of RBPS elements to OSHA PSM elements.**

| CCPS RBPS Element                                | OSHA PSM/EPAs RMP Elements               |
|--------------------------------------------------|------------------------------------------|
| Commit to Process Safety                         |                                          |
| 1. Process Safety Culture                        |                                          |
| 2. Compliance with Standards                     | Process Safety Information               |
| 3. Process Safety Competency                     |                                          |
| 4. Workforce Involvement                         | Employee Participation                   |
| 5. Stakeholder Outreach                          | Stakeholder Outreach (EPA RMP)           |
| Understand Hazards and Risk                      |                                          |
| 6. Process Knowledge Management                  | Process Safety Information               |
| 7. Hazard Identification and Risk Analysis       | Process Hazard Analysis                  |
| Manage Risk                                      |                                          |
| 8. Operating Procedures                          | Operating Procedures                     |
| 9. Safe Work Practices                           | Operating Procedures<br>Hot Work Permits |
| 10. Asset Integrity and Reliability              | Mechanical Integrity                     |
| 11. Contractor Management                        | Contractors                              |
| 12. Training and Performance Assurance           | Training                                 |
| 13. Management of Change                         | Management of Change                     |
| 14. Operational Readiness                        | Pre-startup Safety Review                |
| 15. Conduct of Operations                        |                                          |
| 16. Emergency Management                         | Emergency Planning and Response          |
| Learn from Experience                            |                                          |
| 17. Incident Investigation                       | Incident Investigation                   |
| 18. Measurement and Metrics                      |                                          |
| 19. Auditing                                     | Compliance Audits                        |
| 20. Management Review and Continuous Improvement |                                          |



# CCPS Risk Based Process Safety v OSHA PSM v HSP Safety Plan



**Table 2.1. Comparison of RBPS elements to OSHA PSM elements.**

| <i>CCPS RBPS Element</i>                         | <i>OSHA PSM/EPA RMP Elements</i>         |
|--------------------------------------------------|------------------------------------------|
| <b>Commit to Process Safety</b>                  |                                          |
| 1. Process Safety Culture                        |                                          |
| 2. Compliance with Standards                     | Process Safety Information               |
| 3. Process Safety Competency                     |                                          |
| 4. Workforce Involvement                         | Employee Participation                   |
| 5. Stakeholder Outreach                          | Stakeholder Outreach (EPA RMP)           |
| <b>Understand Hazards and Risk</b>               |                                          |
| 6. Process Knowledge Management                  | Process Safety Information               |
| 7. Hazard Identification and Risk Analysis       | Process Hazard Analysis                  |
| <b>Manage Risk</b>                               |                                          |
| 8. Operating Procedures                          | Operating Procedures                     |
| 9. Safe Work Practices                           | Operating Procedures<br>Hot Work Permits |
| 10. Asset Integrity and Reliability              | Mechanical Integrity                     |
| 11. Contractor Management                        | Contractors                              |
| 12. Training and Performance Assurance           | Training                                 |
| 13. Management of Change                         | Management of Change                     |
| 14. Operational Readiness                        | Pre-startup Safety Review                |
| 15. Conduct of Operations                        |                                          |
| 16. Emergency Management                         | Emergency Planning and Response          |
| <b>Learn from Experience</b>                     |                                          |
| 17. Incident Investigation                       | Incident Investigation                   |
| 18. Measurement and Metrics                      |                                          |
| 19. Auditing                                     | Compliance Audits                        |
| 20. Management Review and Continuous Improvement |                                          |

# Model Risk Based Process Safety Management System

- ▶ Based on AIChE CCPS Risk Based Process Safety Model
- ▶ 4 Pillars
  - Commit to Process Safety
  - Understand Hazards & Risks
  - Learn from Experience
  - Manage Risk
- ▶ 20 elements
- ▶ Plan Do Check Act (Deming Cycle)

## AcuTech Model Process Safety Management System



Based on four underlying pillars supported by the 20 elements of the Center for Chemical Process Safety (CCPS) Risk Based Process Safety Model.

# Presentation Summary

---

- Hydrogen incidents are occurring due to preventable causes and contributing factors that speak to the need for process safety frameworks
- Industry experience of over 40 years of PSM has shown that it has positively changed the way safety is managed
- The application of a PSM framework to hydrogen operations can apply throughout the lifecycle and ecosystem
  - Manufacturing of hydrogen.
  - Transportation.
  - Use of hydrogen as a fuel
- It is recommended to influence the industry for to ensure hydrogen safety through a modern process safety framework